Non-invasive estimation of pulmonary vascular resistance with cardiac magnetic resonance.
نویسندگان
چکیده
AIM To develop a cardiac magnetic resonance (CMR) method for non-invasive estimation of pulmonary vascular resistance (PVR). METHODS AND RESULTS The study comprised 100 consecutive patients with known or suspected pulmonary hypertension (PH; 53 ± 16 years, 73% women) who underwent same-day right heart catheterization (RHC) and CMR. Increased PVR was defined from RHC as >3 WU (n = 66, 66%). From CMR cine and phase-contrast images, right ventricular (RV) volumes and ejection fraction (RVEF), pulmonary artery (PA) flow velocities and areas, and cardiac output were quantified. The best statistical model to estimate PVR was obtained from a derivation cohort (n = 80) based on physiological plausibility and statistical criteria. Validity of the model was assessed in the remaining 20 patients (validation cohort). The CMR-derived model was: estimated PVR (in WU) = 19.38 - [4.62 × Ln PA average velocity (in cm/s)] - [0.08 × RVEF (in %)]. In the validation cohort, the correlation between invasively quantified and CMR-estimated PVR was 0.84 (P < 0.001). The mean bias between the RHC-derived and CMR-estimated PVR was -0.54 (agreement interval -6.02 to 4.94 WU). The CMR model correctly classified 18 (90%) of patients as having normal or increased PVR (area under the receiver operator characteristics curve 0.97; 95% confidence interval: 0.89-1.00). CONCLUSIONS Non-invasive estimation of PVR using CMR is feasible and may be valuable for PH diagnosis and/or follow-up.
منابع مشابه
Prognostic Value of Pulmonary Vascular Resistance by Magnetic Resonance in Systolic Heart Failure.
BACKGROUND Pulmonary hypertension is associated with poor prognosis in heart failure. However, non-invasive diagnosis is still challenging in clinical practice. OBJECTIVE We sought to assess the prognostic utility of non-invasive estimation of pulmonary vascular resistances (PVR) by cardiovascular magnetic resonance to predict adverse cardiovascular outcomes in heart failure with reduced ejec...
متن کاملPrognostic value of pulmonary vascular resistance estimated by cardiac magnetic resonance in patients with chronic heart failure.
AIMS Pulmonary arterial hypertension is known to be related to worse prognosis in patients with heart failure (HF). Quantification of pulmonary vascular resistance (PVR) still requires invasive right heart catheterization. Recent studies have shown an accurate method for non-invasive estimation of PVR by cardiac magnetic resonance (CMR). Our aim was to evaluate the prognostic value of PVR calcu...
متن کاملAssessment of Organ Specific Iron Overload in Transfusion-dependent Thalassemia by Magnetic Resonance Imaging Techniques
The consequence of repeated blood transfusions in thalassemia is iron overload in different organs. Magnetic resonance imaging (MRI) is a reliable, non-invasive and accurate method for iron detection in various tissues, hence the introduction of MRI has revolutionized the management of these patients and improved the life expectancy of them. Cardiac MRI T2* has a profound effect not only on est...
متن کاملA feasible method for non-invasive measurement of pulmonary vascular resistance in pulmonary arterial hypertension: Combined use of transthoracic Doppler-echocardiography and cardiac magnetic resonance. Non-invasive estimation of pulmonary vascular resistance
BACKGROUND Transthoracic Doppler-echocardiography (TTE) can estimate mean pulmonary arterial pressure (MPAP) and pulmonary capillary wedge pressure (PCWP) reliably, and cardiac magnetic resonance (CMR) is the best modality for non-invasive measurement of cardiac output (CO). We speculated that the combined use of TTE and CMR could provide a feasible method for non-invasive measurement of pulmon...
متن کاملCombined CMR and catheterization data in determining right ventricular-arterial coupling in children and adolescents with pulmonary arterial hypertension
Methods This retrospective study included subjects with PAH who a cardiac magnetic resonance (CMR) study within 14 days of cardiac catheterization between January 2009-August 2013. The effective elastance (Ea, index of arterial load) and right ventricular maximal end-systolic elastance (Emax, index of contractility) were determined by a combination of CMR and hemodynamic data. Ea is defined as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European heart journal
دوره 32 19 شماره
صفحات -
تاریخ انتشار 2011